Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 106
1.
Front Neuroendocrinol ; 73: 101136, 2024 Apr.
Article En | MEDLINE | ID: mdl-38670433

Nestorone® (segesterone acetate) is a progestin with a chemical structure closely related to progesterone with high affinity and selectivity for the progesterone receptor without significant interaction with other steroid receptors. It has been developed for female and male contraception and is FDA-approved in a first long-acting contraceptive vaginal system for female contraception. Its safety has been extensively demonstrated in both preclinical and clinical studies for contraceptive indications. Nestorone was found to display neuroprotective and neuroregenerative activity in animal models of various central nervous system diseases, including multiple sclerosis, stroke, and amyotrophic lateral sclerosis. Reviewed herein are neuroprotective and myelin- regenerating properties of Nestorone in various animal models and its translational potential as a therapeutic agent for debilitating neurological diseases for which limited therapeutic options are available (Table 1).


Neuroprotective Agents , Norprogesterones , Animals , Humans , Norprogesterones/pharmacology , Neuroprotective Agents/pharmacology , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Female
2.
Biomolecules ; 14(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38672445

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron degenerative disease that is associated with demyelination. The Wobbler (WR) mouse exhibits motoneuron degeneration, gliosis and myelin deterioration in the cervical spinal cord. Since male WRs display low testosterone (T) levels in the nervous system, we investigated if T modified myelin-relative parameters in WRs in the absence or presence of the aromatase inhibitor, anastrozole (A). We studied myelin by using luxol-fast-blue (LFB) staining, semithin sections, electron microscopy and myelin protein expression, density of IBA1+ microglia and mRNA expression of inflammatory factors, and the glutamatergic parameters glutamine synthetase (GS) and the transporter GLT1. Controls and WR + T showed higher LFB, MBP and PLP staining, lower g-ratios and compact myelin than WRs and WR + T + A, and groups showing the rupture of myelin lamellae. WRs showed increased IBA1+ cells and mRNA for CD11b and inflammatory factors (IL-18, TLR4, TNFαR1 and P2Y12R) vs. controls or WR + T. IBA1+ cells, and CD11b were not reduced in WR + T + A, but inflammatory factors' mRNA remained low. A reduction of GS+ cells and GLT-1 immunoreactivity was observed in WRs and WR + T + A vs. controls and WR + T. Clinically, WR + T but not WR + T + A showed enhanced muscle mass, grip strength and reduced paw abnormalities. Therefore, T effects involve myelin protection, a finding of potential clinical translation.


Amyotrophic Lateral Sclerosis , Disease Models, Animal , Myelin Sheath , Testosterone , Animals , Mice , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Male , Testosterone/pharmacology , Spinal Cord/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Microglia/drug effects , Microglia/metabolism , Microglia/pathology
3.
Rev. Asoc. Méd. Argent ; 137(1): 19-34, mar. 2024. ilus
Article Es | LILACS | ID: biblio-1552860

Con motivo del Día Mundial de la Ciencia y la Tecnología, se realizó en la Casa Museo Bernardo Houssay un conversatorio en el que expertos biógrafos resaltaron algunos aspectos de la trayectoria profesional del Premio Nobel de Medicina de 1947, destacando su actividad como investigador en fisiología y sus cualidades humanas. Estos importantes estudiosos del tema compartieron sus conocimientos en un selecto auditorio. (AU)


On the occasion of World Science and Technology Day, a discussion was held at the Bernardo Houssay House Museum in which expert biographers highlighted some aspects of the professional career of the 1947 Nobel Prize in Medicine, highlighting his activity as a researcher in physiology and his human qualities. These important scholars of the subject shared their knowledge in a select audience. (AU)


History, 19th Century , History, 20th Century , Physiology/history , Biomedical Research , Academies and Institutes/history , Argentina , History of Medicine , Nobel Prize
4.
J Steroid Biochem Mol Biol ; 238: 106461, 2024 04.
Article En | MEDLINE | ID: mdl-38219844

There is growing evidence indicating that mineralocorticoid receptor (MR) expression influences a wide variety of functions in metabolic and immune response. The present study explored if antagonism of the MR reduces neuroinflammation in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Eplerenone (EPLE) (100 mg/kg dissolved in 30% 2-hydroxypropyl-ß-cyclodextrin) was administered intraperitoneally (i.p.) daily from EAE induction (day 0) until sacrificed on day 17 post-induction. The MR blocker (a) significantly decreased the inflammatory parameters TLR4, MYD88, IL-1ß, and iNOS mRNAs; (b) attenuated HMGB1, NLRP3, TGF-ß mRNAs, microglia, and aquaporin4 immunoreaction without modifying GFAP. Serum IL-1ß was also decreased in the EAE+EPLE group. Moreover, EPLE treatment prevented demyelination and improved clinical signs of EAE mice. Interestingly, MR was decreased and GR remained unchanged in EAE mice while EPLE treatment restored MR expression, suggesting that a dysbalanced MR/GR was associated with the development of neuroinflammation. Our results indicated that MR blockage with EPLE attenuated inflammation-related spinal cord pathology in the EAE mouse model of Multiple Sclerosis, supporting a novel therapeutic approach for immune-related diseases.


Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Eplerenone/pharmacology , Eplerenone/therapeutic use , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Neuroinflammatory Diseases , Spinal Cord/pathology , Mice, Inbred C57BL
5.
Mol Neurobiol ; 61(1): 1-14, 2024 Jan.
Article En | MEDLINE | ID: mdl-37566177

Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1ß and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1ß, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.


HMGB1 Protein , Isoquinolines , Neurodegenerative Diseases , Pyrazoles , Male , Mice , Humans , Animals , Receptors, Glucocorticoid/metabolism , Corticosterone , HMGB1 Protein/metabolism , Neuroinflammatory Diseases , Gliosis/metabolism , Toll-Like Receptor 4/metabolism , Glucocorticoids/pharmacology , Spinal Cord/metabolism , Neurodegenerative Diseases/metabolism
6.
Muscle Nerve ; 68(4): 414-421, 2023 10.
Article En | MEDLINE | ID: mdl-37493444

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a higher incidence in men suggesting an influence of sex steroids. Our objective was to investigate past exposure to endogenous and synthetic steroids in female ALS patients and controls. METHODS: We administered a questionnaire to 158 postmenopausal women (75 ALS patients and 83 controls). We calculated reproductive time span (RTS), lifetime endogenous estrogen (LEE) and progesterone exposures (LPE), oral contraceptive pill (OCP) use, and reproductive history. RESULTS: ALS patients showed shorter LEE and LPE, a lower proportion of breast cancer, and 11% showed no history of pregnancies vs. 4% of controls. Odds ratios (ORs) showed that <17 y of LEE and a delayed menarche (>13 y) constitute risk factors for ALS [OR = 2.1 (95% confidence interval {CI}, 1.08-4.2); and OR = 2.4 (95% CI, 1.1-5.1) respectively]. According to Cox survival analysis, for each year the LEE increased over 17 y, it was independently associated with longer survival [hazard ratio (HR) = 0.37 (95% CI, 0.16-0.85)] after adjusting for smoking, age and site of onset. Multivariate regression analysis demonstrated that for each month using OCP for longer than 40 mo increased the risk of ALS [adjusted OR = 4.1 (95% CI, 1.2-13.8)]. DISCUSSION: Thus, longer exposure to endogenous female sex steroids increased survival and reduced ALS susceptibility. In contrast, longer exposure to synthetic sex steroids showed a negative impact by reducing the production of endogenous female sex steroids or due to crossover with other steroid receptors. Given the neuroprotective effects of sex steroids, we suggest that abnormalities of neuroendocrine components may alter motor function in women with ALS.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Male , Humans , Female , Reproductive History , Neurodegenerative Diseases/complications , Gonadal Steroid Hormones , Prognosis , Risk Factors , Steroids
7.
J Neuroendocrinol ; 35(1): e13228, 2023 01.
Article En | MEDLINE | ID: mdl-36690381

Hippocampal neuropathology is a recognized feature of the spontaneously hypertensive rat (SHR). The hippocampal alterations associate with cognitive impairment. We have shown that hippocampal abnormalities are reversed by 17ß-estradiol, a steroid binding to intracellular receptors (estrogen receptor α and ß subtypes) or the membrane-located G-protein coupled estradiol receptor. Genistein (GEN) is a neuroprotective phytoestrogen which binds to estrogen receptor ß and G-protein coupled estradiol receptor. Here, we investigated whether GEN neuroprotection extends to SHR. For this purpose, we treated 5-month-old SHR for 2 weeks with 10 mg kg-1 daily s.c injections of GEN. We analyzed the expression of doublecortin+ neuronal progenitors, glial fibrillary acidic protein+ astrocytes and ionized calcium-binding adapter molecule 1+ microglia in the CA1 region and dentate gyrus of the hippocampus using immunocytochemistry, whereas a quantitative real-time polymerase chain reaction was used to measure the expression of pro- and anti-inflammatory factors tumor necrosis factor α, cyclooxygenase-2 and transforming growth factor ß. We also evaluated hippocampal dependent memory using the novel object recognition test. The results showed a decreased number of doublecortin+ neural progenitors in the dentate gyrus of SHR that was reversed with GEN. The number of glial fibrillary acidic protein+ astrocytes in the dentate gyrus and CA1 was increased in SHR but significantly decreased by GEN treatment. Additionally, GEN shifted microglial morphology from the predominantly activated phenotype present in SHR, to the more surveillance phenotype found in normotensive rats. Furthermore, treatment with GEN decreased the mRNA of the pro-inflammatory factors tumor necrosis factor α and cyclooxygenase-2 and increased the mRNA of the anti-inflammatory factor transforming growth factor ß. Discrimination index in the novel object recognition test was decreased in SHR and treatment with GEN increased this parameter. Our results indicate important neuroprotective effects of GEN at the neurochemical and behavioral level in SHR. Our data open an interesting possibility for proposing this phytoestrogen as an alternative therapy in hypertensive encephalopathy.


Genistein , Phytoestrogens , Rats , Animals , Rats, Inbred SHR , Genistein/pharmacology , Phytoestrogens/pharmacology , Phytoestrogens/metabolism , Glial Fibrillary Acidic Protein/metabolism , Receptors, Estradiol/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cyclooxygenase 2/metabolism , Rats, Inbred WKY , Hippocampus/metabolism , Transforming Growth Factor beta/metabolism , Doublecortin Domain Proteins , RNA, Messenger/metabolism
8.
Cell Mol Neurobiol ; 43(5): 2149-2163, 2023 Jul.
Article En | MEDLINE | ID: mdl-36219378

The Wobbler mouse is an accepted model of sporadic amyotrophic lateral sclerosis. The spinal cord of clinically symptomatic animals (3-5 months old) shows vacuolar motoneuron degeneration, inflammation, and gliosis accompanied by motor impairment. However, data are not conclusive concerning pathological changes appearing early after birth. To answer this question, we used postnatal day (PND) 6 genotyped Wobbler pups to determine abnormalities of glia and neurons at this early age period in the spinal cord. We found astrogliosis, microgliosis with morphophenotypic changes pointing to active ameboid microglia, enhanced expression of the proinflammatory markers TLR4, NFkB, TNF, and inducible nitric oxide synthase. The astrocytic enzyme glutamine synthase and the glutamate-aspartate transporter GLAST were also reduced in PND 6 Wobbler pups, suggesting excitotoxicity due to impaired glutamate homeostasis. At the neuronal level, PND 6 Wobblers showed swollen soma, increased choline acetyltransferase immunofluorescence staining, and low expression of the neuronal nuclear antigen NeuN. However, vacuolated motoneurons, a typical signature of older clinically symptomatic Wobbler mice, were absent in the spinal cord of PND 6 Wobblers. The results suggest predominance of neuroinflammation and abnormalities of microglia and astrocytes at this early period of Wobbler life, accompanied by some neuronal changes. Data support the non-cell autonomous hypothesis of the Wobbler disorder, and bring useful information with regard to intervening molecular inflammatory mechanisms at the beginning stage of human motoneuron degenerative diseases.


Amyotrophic Lateral Sclerosis , Humans , Animals , Mice , Infant , Neuroinflammatory Diseases , Motor Neurons , Inflammation , Neuroglia , Disease Models, Animal , Gliosis , Spinal Cord , Mice, Neurologic Mutants
9.
Cell Mol Neurobiol ; 42(1): 197-215, 2022 Jan.
Article En | MEDLINE | ID: mdl-32537668

The hippocampus encodes spatial and contextual information involved in memory and learning. The incorporation of new neurons into hippocampal networks increases neuroplasticity and enhances hippocampal-dependent learning performances. Only few studies have described hippocampal abnormalities after spinal cord injury (SCI) although cognitive deficits related to hippocampal function have been reported in rodents and even humans. The aim of this study was to characterize in further detail hippocampal changes in the acute and chronic SCI. Our data suggested that neurogenesis reduction in the acute phase after SCI could be due to enhanced death of amplifying neural progenitors (ANPs). In addition, astrocytes became reactive and microglial cells increased their number in almost all hippocampal regions studied. Glial changes resulted in a non-inflammatory response as the mRNAs of the major pro-inflammatory cytokines (IL-1ß, TNFα, IL-18) remained unaltered, but CD200R mRNA levels were downregulated. Long-term after SCI, astrocytes remained reactive but on the other hand, microglial cell density decreased. Also, glial cells induced a neuroinflammatory environment with the upregulation of IL-1ß, TNFα and IL-18 mRNA expression and the decrease of CD200R mRNA. Neurogenesis reduction may be ascribed at later time points to inactivation of neural stem cells (NSCs) and inhibition of ANP proliferation. The number of granular cells and CA1 pyramidal neurons decreased only in the chronic phase. The release of pro-inflammatory cytokines at the chronic phase might involve neurogenesis reduction and neurodegeneration of hippocampal neurons. Therefore, SCI led to hippocampal changes that could be implicated in cognitive deficits observed in rodents and humans.


Neural Stem Cells , Spinal Cord Injuries , Hippocampus/metabolism , Humans , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neuroglia/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
10.
Cell Mol Neurobiol ; 42(1): 23-40, 2022 Jan.
Article En | MEDLINE | ID: mdl-34138412

Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.


Amyotrophic Lateral Sclerosis , Neuroprotective Agents , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Mice , Motor Neurons , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pregnanolone/metabolism , Pregnanolone/pharmacology , Pregnanolone/therapeutic use , Progesterone/metabolism , Progesterone/pharmacology , Progesterone/therapeutic use , Spinal Cord/metabolism
11.
J Neuroendocrinol ; 34(1): e13078, 2022 01.
Article En | MEDLINE | ID: mdl-34961984

Multiple sclerosis (MS) is an immune-mediated and degenerating disease in which myelin sheaths are damaged as a result of chronic progressive inflammation of the central nervous system. Tibolone [(7α,17α)-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-in-3-one], a synthetic estrogenic compound with tissue-specific actions and used for menopausal hormone therapy, shows neuroprotective and antioxidant properties both in vivo and in vitro. In the present study, we analyzed whether tibolone plays a therapeutic role in experimental autoimmune encephalomyelitis (EAE) mice, a commonly used model of MS. Female C57BL/6 mice were induced with the myelin oligodendrocyte glycoprotein MOG35-55 and received s.c. tibolone (0.08 mg kg-1 ) injection every other day from the day of induction until death on the acute phase of the disease. Reactive gliosis, Toll like receptor 4 (TLR4), high mobility group box protein 1 (HMGB1), inflammasome parameters, activated Akt levels and myelin were assessed by a real-time polymerase chain reaction, immunohistochemistry, and western blot analysis. Our findings indicated that, in the EAE spinal cord, tibolone reversed the astrocytic and microglial reaction, and reduced the hyperexpression of TLR4 and HMGB1, as well as NLR family pyrin domain containing 3-caspase 1-interleukin-1ß inflammasome activation. At the same time, tibolone attenuated the Akt/nuclear factor kappa B pathway and limited the white matter demyelination area. Estrogen receptor expression was unaltered with tibolone treatment. Clinically, tibolone improved neurological symptoms without uterine compromise. Overall, our data suggest that tibolone may serve as a promising agent for the attenuation of MS-related inflammation.


Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuritis/prevention & control , Norpregnenes/therapeutic use , Animals , Disease Models, Animal , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Inflammation/pathology , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Neuritis/pathology , Neuroprotective Agents/therapeutic use , Remission Induction
12.
Mol Neurobiol ; 58(12): 6186-6202, 2021 Dec.
Article En | MEDLINE | ID: mdl-34463925

The hippocampus is implicated in the generation of memory and learning, processes which involve extensive neuroplasticity. The generation of hippocampal adult-born neurons is particularly regulated by glial cells of the neurogenic niche and the surrounding microenvironment. Interestingly, recent evidence has shown that spinal cord injury (SCI) in rodents leads to hippocampal neuroinflammation, neurogenesis reduction, and cognitive impairments. In this scenario, the aim of this work was to evaluate whether an adenoviral vector expressing IGF1 could reverse hippocampal alterations and cognitive deficits after chronic SCI. SCI caused neurogenesis reduction and impairments of both recognition and working memories. We also found that SCI increased the number of hypertrophic arginase-1 negative microglia concomitant with the decrease of the number of ramified surveillance microglia in the hilus, molecular layer, and subgranular zone of the dentate gyrus. RAd-IGF1 treatment restored neurogenesis and improved recognition and working memory impairments. In addition, RAd-IGF1 gene therapy modulated differentially hippocampal regions. In the hilus and molecular layer, IGF1 gene therapy recovered the number of surveillance microglia coincident with a reduction of hypertrophic microglia cell number. However, in the neurogenic niche, IGF1 reduced the number of ramified microglia and increased the number of hypertrophic microglia, which as a whole expressed arginase-1. In summary, RAd-IGF1 gene therapy might surge as a new therapeutic strategy for patients with hippocampal microglial alterations and cognitive deficits such as those with spinal cord injury and other neurodegenerative diseases.


Cognition/physiology , Cognitive Dysfunction/therapy , Genetic Therapy , Hippocampus/metabolism , Insulin-Like Growth Factor I/genetics , Neurogenesis/physiology , Spinal Cord Injuries/therapy , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Male , Microglia/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/complications , Spinal Cord Injuries/metabolism
13.
J Steroid Biochem Mol Biol ; 207: 105820, 2021 03.
Article En | MEDLINE | ID: mdl-33465418

Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3ß-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRß, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.


Cerebellum/metabolism , Myelin Basic Protein/genetics , Phosphoproteins/genetics , Progesterone/genetics , Animals , Cerebellum/growth & development , Gene Expression Regulation, Developmental , Mice , Progesterone/biosynthesis , Protein Binding/genetics , RNA, Messenger/genetics
14.
Neurosci Biobehav Rev ; 122: 38-65, 2021 03.
Article En | MEDLINE | ID: mdl-33359391

Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.


Nervous System Diseases , Neuroprotective Agents , Progestins , Humans , Nervous System Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Progesterone , Progestins/therapeutic use , Receptors, Progesterone , Spinal Cord Injuries
15.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article En | MEDLINE | ID: mdl-32244957

Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic-pituitary-adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine-threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.


Neurodegenerative Diseases/drug therapy , Receptors, Glucocorticoid/metabolism , Animals , Corticosterone/blood , Corticosterone/chemistry , Disease Models, Animal , Humans , Inflammation/blood , Inflammation/complications , Models, Biological , Neurodegenerative Diseases/blood , Receptors, Glucocorticoid/antagonists & inhibitors
16.
Cell Mol Neurobiol ; 40(5): 711-723, 2020 Jul.
Article En | MEDLINE | ID: mdl-31784921

It is known that spontaneously hypertensive rats (SHR) present a marked encephalopathy, targeting vulnerable regions such as the hippocampus. Abnormalities of the hippocampus of SHR include decreased neurogenesis in the dentate gyrus (DG), partial loss of neurons in the hilus of the DG, micro and astrogliosis and inflammation. It is also known that 17ß-estradiol (E2) exert neuroprotective effects and prevent hippocampal abnormalities of SHR. The effects of E2 may involve a variety of mechanisms, including intracellular receptors of the ERα and ERß subtypes or membrane-located receptors, such as the G protein-coupled estradiol receptor (GPER). We have now investigated the protective role of GPER in SHR employing its synthetic agonist G1. To accomplish this objective, 5 month-old male SHR received 150 µg/day of G1 during 2 weeks. At the end of this period, we analyzed neuronal progenitors by staining for doublecortin (DCX), and counted the number of glial fibrillary acidic protein (GFAP)-labeled astrocytes and Iba1-stained microglial cells by computerized image analysis. We found that G1 activation of GPER increased DCX+ cells in the DG and reduced GFAP+ astrogliosis and Iba1+ microgliosis in the CA1 region of hippocampus. We also found that the high expression of proinflammatory makers IL1ß and cyclooxygenase 2 (COX2) of SHR was decreased after G1 treatment, which correlated with a change of microglia phenotype from the activated to a resting morphology. Additionally, G1 treatment increased the anti-inflammatory factor TGFß in SHR hippocampus. Altogether, our results suggest that activation of GPER plays a neuroprotective role on the encephalopathy of SHR, an outcome resembling E2 effects but avoiding secondary effects of the natural hormone.


Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Hippocampus/abnormalities , Hippocampus/pathology , Hypertensive Encephalopathy/metabolism , Inflammation/metabolism , Neurogenesis , Receptors, G-Protein-Coupled/metabolism , Animals , Astrocytes/metabolism , Doublecortin Protein , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/agonists , Estrogen Receptor beta/genetics , Glial Fibrillary Acidic Protein , Hypertensive Encephalopathy/drug therapy , Male , Microglia/metabolism , Quinolines/pharmacology , Quinolines/therapeutic use , Rats , Rats, Inbred SHR , Receptors, Estradiol/agonists , Receptors, Estradiol/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics
17.
Brain Res ; 1727: 146551, 2020 01 15.
Article En | MEDLINE | ID: mdl-31726042

The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.


Isoquinolines/administration & dosage , Motor Neurons/drug effects , Motor Neurons/pathology , Pyrazoles/administration & dosage , Receptors, Glucocorticoid/antagonists & inhibitors , Spinal Cord/drug effects , Spinal Cord/pathology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Cell Death/drug effects , Cell Survival/drug effects , Encephalitis/pathology , Female , Glutamic Acid/toxicity , Male , Mice , Microglia/drug effects , Microglia/pathology
18.
Neural Regen Res ; 14(12): 2029-2034, 2019 Dec.
Article En | MEDLINE | ID: mdl-31397329

A new role has emerged for progesterone after discovering its potent actions away from reproduction in both the central and the peripheral nervous system. The aim of the present report is to discuss progesterone's mechanisms of action involved in myelination, remyelination and neuroinflammation. The pivotal role of the classic progesterone receptor is described and evidence is compiled about progesterone's direct effects on oligodendrocyte linage and its indirect effects on oligodendrocyte precursor cell differentiation by decreasing the neuroinflammatory environment.

19.
J Steroid Biochem Mol Biol ; 192: 105385, 2019 09.
Article En | MEDLINE | ID: mdl-31150830

The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.


Disease Models, Animal , Motor Neurons/drug effects , Neurodegenerative Diseases/drug therapy , Neuroprotection/drug effects , Norethindrone/pharmacology , Progesterone/pharmacology , Progestins/pharmacology , Animals , Contraceptives, Oral, Synthetic/pharmacology , Mice , Motor Neurons/pathology
20.
Cell Mol Neurobiol ; 39(4): 471-472, 2019 May.
Article En | MEDLINE | ID: mdl-30941611

Steroids are complex molecules, exerting known and still unknown effects in the nervous system. Throughout this volume, the reader will find a wide spectrum of articles, giving an up-to-date account of the molecular, physiological, pharmacological, and clinical aspects of steroid action on the nervous system.


Nervous System/drug effects , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Steroids/pharmacology , Animals , Humans , Mice , Neuroprotection/drug effects
...